
Efficient and Compatible CFI for x86-64 binaries

A Thesis presented

by

Rohit Chouhan

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

May 2023

Stony Brook University

The Graduate School

Rohit Chouhan

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis

R. Sekar
Professor, Computer Science

Michalis Polychronakis
Associate Professor, Computer Science

Dongyoon Lee
Assistant Professor, Computer Science

This thesis is accepted by the Graduate School

Celia Marshik

Interim Dean of the Graduate School

ii

Abstract of the Thesis

Efficient and Compatible CFI for x86-64 binaries

by

Rohit Chouhan

Master of Science

in

Computer Science

Stony Brook University

2023

Control-Flow Integrity (CFI) is a low-level security policy that can serve as the
basis for secure and non-bypassable instrumentation. Protecting backward-
edge (returns) through a coarse-grained CFI is insufficient, as previous studies
have shown that it can be easily bypassed. Shadow stacks provide fine-grained
protection, but binary-instrumentation based shadow stack protection suffers
from significant performance overheads.

In this thesis, we present a new binary-instrumentation based CFI technique.
It combines coarse-grained CFI for forward edges (indirect calls and jumps)
with a shadow stack for protecting backward edges. For forward-edge protec-
tion, we compare two alternative techniques, one based on runtime address
translation and another based on statically replacing code pointers with array
indices. For backward-edge protection, we develop a novel way to piggyback
an efficient shadow stack on top of the stack canary mechanism that is already
included in most binaries. This combination can achieve a combined perfor-
mance overhead of about 7% on the SPEC 2006 benchmark suite.

iii

Dedication

I DEDICATE THIS THESIS TO MY MOTHER, ARCHANA, THE KINDEST AND MOST SELFLESS PER-
SON I KNOW.

TO MY FATHER, JAYDEEP, FOR HIS UNWAVERING TRUST AND SUPPORT IN ALL OF MY ENDE-
VOURS.

FINALLY, I WOULD LIKE TO DEDICATE THIS THESIS TO MY GRANDMOTHER FOR TEACHING ME

THE JOY OF GIVING, TO MY MATERNAL GRANDFATHER, FOR INSPIRING ME TO BE A GOOD HU-
MAN BEING. I ALSO EXTEND MY DEDICATION TO MY BROTHER FOR HIS SUPPORT AND TO GOD

FOR HELPING ME ALL ALONG THE WAY.

iv

CONTENTS

Acknowledgments vi

1 Introduction 1

2 Related work 2
2.1 Control-Flow Integrity . 2
2.2 Shadow stack . 3

3 Backward-edge CFI 4
3.1 Shadow stack design . 5

3.1.1 Security analysis . 7
3.1.2 Implementation . 7

3.2 Intel CET shadow stack . 10
3.2.1 Problems . 10

4 Forward-edge CFI 11
4.1 Address translation based CFI . 11

4.1.1 Hashing algorithm . 11
4.1.2 Hash table setup . 15

4.2 Index-based CFI . 17
4.2.1 Inlining of decoding routine . 18

4.3 Implementation . 18

5 Evaluation 19

6 Conclusion 21

Bibliography 23

v

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Professor R. Sekar, for their
invaluable advice, guidance, and support throughout my Masters degree. Their expertise
and mentorship have been instrumental in shaping the success of this research.

I would also like to extend my heartfelt thanks to Soumyakant Priyadarshan, who has
been a great mentor to me. Working alongside Soumyakant has been a truly rewarding
experience, and their guidance and insights have contributed significantly to my growth as
a researcher.

Additionally, I am grateful to my colleagues Huan and Hanke for their encouragement
and support throughout this journey. Their camaraderie and willingness to lend a helping
hand have made this experience more enjoyable and fulfilling.

vi

1 INTRODUCTION

Control-Flow Integrity (CFI) [1, 2, 3, 52, 8, 51, 54, 25] is a low-level security mechanism
that prevents unintended transfer of control flow. It is achieved by enforcing a set of rules
that do not allow a program to transfer control flow to unintended targets. CFI can miti-
gate the threat from code-reuse attacks such as Return-Oriented Programming (ROP) [37]
and Jump-Oriented Programming (JOP) [10, 4], which typically involves corrupting a code
pointer to divert the control flow of the program to chained gadgets (set of instructions) in
the address space of the program. CFI also lays a foundation for secure and non-bypassable
instrumentation [53, 50] enabling other protection mechanisms such as Software Fault Iso-
lation (SFI) to be built on top.

A complete CFI solution will protect both forward edges such as indirect calls and back-
ward edges e.g. returns. Coarse-grained forward-edge policies are effective in stopping a
majority of attacks on forward edges. However, control-flow hijacking attacks like ROP that
target backward edges are still viable even with a coarse-grained backward-edge policy in
place [8, 13, 18]. A precise mechanism like shadow stack [7, 34, 12, 40, 15, 14, 30, 29, 26] is
needed to effectively mitigate attacks on backward edges. A shadow stack guarantees the
integrity of a return address by storing a second copy of the return address in an isolated
memory region. At every call instruction, a copy of the return address is pushed onto the
shadow stack. Then, at every return instruction, the return address on the top of the stack is
compared with the second copy stored on the shadow stack. On a mismatch, the program
is aborted to prevent a control-flow hijack. Although the idea of shadow stack has been
around for a long time, its wide-scale deployment is limited due to performance overhead
and compatibility issues with features such as exception handling and longjmp.

We propose a novel binary-instrumentation based shadow stack design that makes use of
the stack canary slot on the program stack to maintain a direct pointer to the shadow stack.
The design of our shadow stack is guided by factors such as compatibility, performance,
and modularity. We measure the performance of our shadow stack using SPEC CPU 2006
benchmark suite. Our shadow stack does not require any changes to glibc or other libraries.

To be an effective defense mechanism a shadow stack has to be combined with a forward-
edge CFI. Therefore, we build our shadow stack on top of a coarse-grained forward-edge
CFI. Our approach works by keeping instrumented code in a new code segment different
original code segment. This means that pointer constants in the new code would still point
to the original code. Since there is no reliable way to distinguish code pointers from pointer
constants, we follow an approach similar to BinCFI [54]. By waiting until a value is used as
a target in an Indirect Control-Flow (ICF) transfer and then performing the fix-up at the
runtime by finding the new code address corresponding to the original address. This is
achieved by maintaining a table that maps the original address to its corresponding new
address. This is called runtime address-translation and it is useful for the following reasons:

1. Ensures CFI by allowing ICF transfers to only go to predetermined targets from the
lookup table.

2. It ensures correct instrumentation of binaries by doing runtime translation instead of

1

static translation. Static translation depends on the identification of code pointers,
which is not 100% accurate.

Address translation based schemes usually make use of a hash table to map the old code
address to the new code address. Hence, the performance of address translation based
schemes would depend on the performance of its hash table lookup. However, a systematic
study on the performance limits of address translation has not been done. Beyond propos-
ing our novel shadow stack design, we also investigate ways to improve the performance
of address translation technique to help make address translation based CFI implementa-
tions more efficient. We also compare address translation with a faster but less robust array
index-based scheme that relies on static code pointer modification.

We make the following contributions in this thesis:

• We significantly improve the performance of binary-based shadow stack implemen-
tation by piggybacking over the canary instrumentation that is already part of most
compiled binaries. In addition, our scheme avoids the compatibility challenges faced
in shadow stack implementations, such as those due to exception handling and long
jumps.

• We compare an index-based CFI scheme with one based on the address translation
technique used in binary instrumentation systems such as DynamoRio [6], Pin [31]
and BinCFI [54]. The index-based approach requires all code pointers to be statically
transformed into indices, which are then used at runtime to index into a table of ac-
tual targets. In this thesis, we explore the limits of performance that can be achieved
using address translation and compare it with that of the index-based approach.

2 RELATED WORK

2.1 CONTROL-FLOW INTEGRITY

Ever since its introduction by Abadi et al. [1], CFI has been a fundamental security feature
that restricts the control-flow of an application to desired paths. It works by limiting the
targets that an Indirect Control Flow (ICF) transfer can take. CFI also enables the imple-
mentation of other security mechanisms such as Software Fault Isolation (SFI).

PittSFIeld [23], Native Client [49], and other works [21, 32] that enforce CFI often rely on
compiler-provided information, e.g., relocation information. BinCFI [54] brings a binary-
level coarse-grained CFI for stripped COTS binaries on 32-bit Linux. Since, it uses binary
instrumentation, newly added instructions will cause the address of all code pointers to
change. To fix this, code pointers need to be changed to their new addresses. BinCFI uses
an address translation [6] based approach for translating code pointers by doing a fixup at
runtime. This translation is performed by using a table that maps the original address to
the new address. BinCFI does not rely on any compiler-provided information and can work
with stripped binaries.

BinCC [44] builds on top of BinCFI to improve upon the tightness of CFI policy. It does

2

so by dividing the code into mutually exclusive continents and then applying strict policies
for both inter and intra-continent transfer.

CCFIR [52] is a binary-level CFI solution for Windows binaries. It works by redirecting all
indirect control-flow transfers through a springboard section and limiting indirect control-
flow transfers to it. Typearmor [43] focuses on reducing the number of possible targets for
an indirect call site. It is a binary-based solution and works by doing a static analysis to infer
the type of a function, i.e., the type of its arguments and return values. This information is
matched with the calling context for an indirect call, enabling the target set to be narrowed
to those functions whose argument types match those at the calling site.

Works such as CFCI [29, 55] deploy fine-grained CFI but it is shown that even fine-grained
CFI can be bypassed [8].

2.2 SHADOW STACK

Since coarse-grained policies are insufficient in protecting backward edges [8, 13, 9]. The
idea of using a precise mechanism such as a shadow stack for defending against ROP at-
tacks has been for a long time. Shadow stack was first proposed as a defense against stack-
smashing attacks [17, 33].

Compiler-based [41, 7] as well as binary instrumentation [33, 34, 53] based implementa-
tions have been presented in the past. Dynamic binary instrumentation [5, 6, 16, 21, 22, 24,
36] based approaches like ROPdefender [14] handled compatibility issues like C++ excep-
tion handling and use of non-standard return in lazy binding but suffered from significant
runtime overhead.

PSI [53] shows a very simple implementation of a shadow stack using static binary in-
strumentation [19, 35, 39, 54]. It shows an elegant approach for initializing shadow stacks
for all the threads by checking the validity of the shadow stack before pushing a value on
it. This approach does not require any library changes. The paper by Qiao et al. [34] builds
a complete ROP defense solution on top of PSI. It achieves a very good performance while
maintaining compatibility with non-standard calls/returns, threading mechanisms, etc.

Dang et al. [12] introduce parallel shadow stack design which is proposed as a faster al-
ternative to traditional shadow stacks. It eliminates the need to maintain a shadow stack
pointer by storing the shadow stack at a fixed offset from the program stack. Authors note
that their approach is not intended for real-world deployment but to measure the perfor-
mance cost of a shadow stack.

Burow et al. [7] summarizes all the possible shadow stack mechanism based on factors
such as performance, security, and compatibility. It proposes an LLVM-based compact
shadow stack implementation that makes use of a dedicated register to store the shadow
stack pointer. Multi-threading support is achieved by preloading a support library. In the
case of setjmp/longjmp use, synchronization is maintained by popping the shadow stack
until the value at the top of the shadow stack matches the return address on the program
stack. It also shows that shadow stack integrity protection remains an open challenge as

3

none of the hardware-based techniques they tested provided low enough overheads to be
ready for real-world deployment and the authors suggested using information hiding as
protection mechanism.

3 BACKWARD-EDGE CFI

Seminal work by Aleph One [27] demonstrated how an attacker can overflow a local variable
on the stack to overwrite the return address and hijack the control-flow of the program.
To detect buffer overflow modern compilers place a special value called the stack canary
[11] between the return address and local variables. A contiguous buffer overflow would
also overwrite the stack canary, which is checked before a function returns. Unfortunately,
information leak attacks can bypass stack canaries easily, subverting the defense checks.
Nevertheless, canaries have seen a wide-scale deployment due to low overheads of less
than 1%. To encourage the adoption of stronger backward edge protection, the mechanism
should only incur comparable overheads.

Shadow stack [10] is a fine-grained mechanism used to enforce the integrity of return
addresses by keeping a second copy in an isolated memory region. Before returning from
a function the return address is checked against a second copy stored on the shadow stack.
Since it is hard for attackers to simultaneously corrupt the return address at two locations,
shadow stacks can provide stronger protection than canaries.

Some of the key challenges in the implementation of shadow stack as mentioned by pre-
vious works [34, 7, 12] are:

• Non-standard use of call and return instructions: Functions calls and returns do not
always maintain symmetry. This can happen with longjmp, exception handling, etc.

• Compatibility with multi-threaded programs: Each thread maintains its stack, so a
shadow stack needs to be maintained for each of the program threads.

• Integrity of the shadow stack memory pages: Shadow stack pages should be pro-
tected so that the attacker cannot modify them.

• Performance of shadow stack protected program.

Many implementations of shadow stacks have been presented over the past years. Previ-
ous works [7, 34] use repeated popping to bring the shadow stack back in synchronization
with the program stack when the stack unwinds multiple frames and call-ret symmetry is
violated. We propose a new technique for maintaining the synchronization between the
two stacks, without needing iteratively pop the shadow stack. We piggyback the canary in-
structions and canary slot on the program stack to store the address of the return address
copy of the stack frame.

4

Old base pointer

Program Stack

High address

Low address

Parameters

Return address 1

XOR canary

Canary
Shstk addr ^ canary

Local variables

Shadow Stack

Return address 1

Canary value fs:0x28

Return address 2

top of shadow stack

...

...

fs:0x78

Figure 3.1: Program stack setup with a pointer to corresponding shadow stack entry.

3.1 SHADOW STACK DESIGN

Design choices for a shadow stack determine important characteristics such as compati-
bility, integrity, and performance. We describe the major design decisions of our shadow
stack below.

SYNCHRONIZATION: In x86, a call instruction pushes the return address on the program
stack and a corresponding ret instruction pops the return address and jumps to it. This
call-ret symmetry is violated in cases where setjmp/longjmp and C++ exception handling
is used – causing the stack to unwind multiple frames. This leads to the problem of the
shadow stack going out of synchronization with the program stack, so the return address
stored on the program stack does not match the return address on top of the shadow stack.
Previous works usually solve this issue by repeatedly popping the shadow stack until the
top entry matches to program stack return address. This approach is imprecise, and, can
be confused in the presence of recursion. To solve this, one can also push the program
stack pointer along with the return address to have a unique identification of the correct
stack frame to unwind the shadow stack.

We propose a solution to this problem by making use of the canary slot to link a stack
frame with the location in the shadow stack that holds the return address of that frame. At
function return, this pointer can be used to synchronize the shadow stack with the program
stack after an operation such as a longjmp. Figure 3.1 shows this setup.

COMPATIBILITY: With every call instruction, the return address has to be pushed to both
the program stack and the shadow stack, and before every return instruction the return
address on the program stack needs to be compared with the return address stored on the
shadow stack. Instrumentation for saving the return address on the shadow stack could be
done either at the call site or in the function prologue. Instrumenting the call site breaks

5

Call func

Instrumentation 1

Instrumentation 2

ret

Body of func

Figure 3.2: Callee-only instrumentation scheme.

the call-ret symmetry in cases when there is an atypical use of call instruction, e.g., using a
call to compute code-relative address on 32-bit systems. By choosing to do all the instru-
mentation inside a callee, stack call-ret symmetry is always ensured. The instrumentation
locations are shown in Figure 3.2. This also enables mixing unprotected functions with
protected functions because a call would not have to distinguish between a shadow stack
protected and a non-protected function. Furthermore, we can selectively instrument func-
tions for shadow stack protection, assisting with incremental deployability.

We instrument function prologues with a shadow stack push instruction and function
epilogue with a shadow stack pop instruction. For ensuring compatibility with multi-threaded
programs, we initialize one shadow stack for each thread. The shadow stack pointer for
each shadow stack is stored in thread-local storage (TLS).

INTEGRITY: A shadow stack is essentially a read/write metadata for inline checks for backward-
edge CFI. If an attacker can manipulate values on the shadow stack, our checks would be
rendered useless. Hence, we need a mechanism to maintain the integrity of our shadow
stack. Two techniques have been used in the literature:

• Information hiding: This is an attractive option for performance but is less secure. In-
tegrity of the shadow stack depends on keeping its location hidden from an attacker.

• Write protection of shadow stack pages: This offers much better security at the cost
of increased overheads.

Burow et al. [7] shows that even hardware-supported integrity mechanisms such as Intel
Memory Protection Keys suffers high overheads. Hence, we have decided to go with infor-
mation hiding.

To protect the address of the shadow stack stored on the program stack, we xor it with
the stack canary value and then store it at the canary slot on the program stack. We store
the address of the top of the shadow stack in TLS. Essentially, knowing this gives someone
permission to read/write from the shadow stack. Refer to Figure 3.1.

6

3.1.1 SECURITY ANALYSIS

THREAT MODEL: We assume that the attacker can read or write arbitrary memory loca-
tions, but does not know the location of TLS. The target system is running a benign but
vulnerable program with memory vulnerabilities. Defenses like DEP and ASLR [42] are en-
abled and stack canaries [11] are no longer deployed since we have repurposed their code
for our shadow stack implementation. An attacker is interested in corrupting a code pointer
specifically by targeting a backward-edge by overwriting the return address on the stack.

SHADOW STACK INTEGRITY: The protection offered by the shadow stack mechanism de-
pends on the integrity of the shadow stack values. An attacker should not be able to control
shadow stack values. There are two approaches taken by past works to protect the shadow
stack. (i) Write protected shadow stack (ii) Hidden shadow stack (information hiding). In
the case of a write-protected shadow stack, the memory pages containing the shadow stack
are unwritable and only certain privileged instructions are allowed to write to the shadow
stack. With information hiding, knowing the location of the shadow stack gives access to
read and write to it. It is faster since there is no permission switch but offers less security.
We have opted to go with information hiding as the technique to protect the integrity of
our shadow stack. We store the shadow stack address xored with the stack canary value on
the program stack. So, even if the attacker can leak the stored value on the stack, it would
not be of any help without knowing the canary value. Since the attacker does not know the
location of TLS, it is very hard to get the value of the canary from TLS.

TOCTTOU ATTACKS: Time Of Check To Time Of Use (TOCTTOU) attacks are a type of se-
curity vulnerability where the attacker takes advantage of a window of time between the
check and use of a resource. There are two TOCTTOU opportunity windows in our pro-
posed design:

1. In x86 call instruction pushes the address of the next instruction onto the stack. This
can be modified by the attacker before it is picked up by our instrumentation in func-
tion prologue.

2. Another window is at function return, the return address may be correct at the time
of the shadow stack epilogue check but can be modified by the attacker before the
function returns.

However, this vulnerability is very difficult to exploit as mentioned by Zhang et al.
[51]. To carry out a TOCTTOU attack the attacker needs to be in control of a thread
that is racing with a thread of a vulnerable program. Since this is not possible with
our assumed threat model we leave it out as a possible attack.

3.1.2 IMPLEMENTATION

INITIALIZING THE SHADOW STACKS: To maintain compatibility with multi-threaded pro-
grams we initialize a shadow stack for each thread. A new shadow stack should be initial-

7

1 mov %fs:0x28,%rax
2 mov %rax,0x28(%rsp)

1 xor %fs:0x28,%rcx
2 jne stack_chk_fail

Figure 3.3: Original canary prologue (left) and canary epilogue (right).

ized whenever a new thread is spawned. This could be achieved by potentially changing
glibc. Since our focus is on ensuring maximum compatibility while being efficient we select
a less efficient but more robust option to check the status of the shadow stack at shadow
stack insertion code, an approach similar to PSI [53]. A cmp instruction is used to check
the initialization status of the shadow stack. If not initialized the shadow stack is initial-
ized and the memory address of the shadow stack is stored in the TLS slot reserved for the
hardware-based shadow stack (currently unused).

REPURPOSING CANARY CODE: Proposed shadow stack design depends upon the shadow
stack address saved on the program stack at the canary slot to maintain synchronization
between the stacks. By default, GCC does not put canary checks in all the functions, and
finding a usable slot on the stack can be very difficult for complex binaries. Hence, to ex-
pedite and simplify implementation we compiled binaries with canary checks for all func-
tions using the flag -fstack-protector-all.

Stack canary related code in a function is generally divided into two parts: (i) canary
prologue (ii) canary epilogue. As shown in Figure 3.3 canary prologue is reading the canary
value from TLS and storing it on the stack. The epilogue performs an equality check, usually
by performing a xor, and aborts the program if the values do not match. This is analogous
to what we want to achieve with shadow stacks. Hence, canary code can essentially be
piggybacked without shadow stack instrumentation.

CANARY PROLOGUE INSTRUMENTATION: Canary prologue is responsible for storing the ca-
nary value on the stack. This is replaced by a sequence of instructions that first checks for
the initialization of the shadow stack and then copies the return address on it as shown in
Figure 3.4. We do static analysis to find the return address on the stack. The instruction
following the added instructions moves the xored shadow stack address at the canary slot
on the program stack.

CANARY EPILOGUE INSTRUMENTATION: We describe a canary epilogue as the set of in-
structions responsible for checking the equality of the canary value on the stack and with
the canary value stored in TLS. This site is instrumented to add instructions for the syn-
chronization of stacks by setting the top of the shadow stack equal to the shadow stack
address stored at the canary slot. The canary check is disabled by doing xor of equal values
to set the flag registers right. The pseudo-assembly for this is shown in Figure 3.4.

8

1 cmp $0,%fs:0x78
2 jne .shstk_ok
3 call .init_shstk
4 .shstk_ok:
5 add $8,%fs:0x78
6 push extra_reg
7 mov 0x28(%rsp),extra_reg
8 mov %fs:0x78,canary_reg
9 mov extra_reg,(canary_reg)

10 xor %fs:0x28,canary_reg
11 pop extra_reg

1 xor %fs:0x28,canary_reg
2 mov canary_reg,%fs:0x78
3 xor canary_reg, canary_reg

Figure 3.4: Instrumented canary prologue (left) and canary epilogue (right).

1 push %rdi
2 push %rsi
3 mov 16(%rsp),%rdi
4 mov %fs:0x78,%rsi
5 sub $8,%fs:0x78
6 cmp (%rsi),%rdi
7 jne shstk_abort
8 pop %rsi
9 pop %rdi

Figure 3.5: Instrumented function return.

FUNCTION RETURN INSTRUMENTATION: At function returns, we add instructions to check
if the return address on the program stack matches the return address stored on the shadow
stack, as shown in Figure 3.5. If the return addresses do not match the function, abort_shstk
is called which prints some debugging information. No additional shadow stack unwind-
ing or synchronization operations are needed here since we already did that in the canary
epilogue instrumentation preceding the return instruction.

Instrumentation for synchronization of the shadow stack and checking the integrity of
the return address is split into two parts to eliminate the requirement of doing a static anal-
ysis in the canary epilogue for finding the location the of return address on the program
stack. Since, at a return instruction the stack pointer would be pointing to the return ad-
dress.

Our shadow stack implementation works with a modest overhead of 4.92% on SPEC CPU
2006 binaries. We present a detailed evaluation in Chapter 5.

9

3.2 INTEL CET SHADOW STACK

Intel Control-Flow Enforcement Technology (CET) [38] is a hardware-supported defense
mechanism against JOP and ROP attacks. It is supported starting from 11th generation
Intel processor and requires compiler, glibc, and Kernel support which is not available at
the moment. Full support for hardware features usually takes time, and their deployment
is often slowed down because of compatibility issues. CET has two components:

1. Indirect Branch Tracking (IBT)

2. Shadow Stack (SHSTK)

IBT is a coarse-grained forward-edge hardware-based check. All valid indirect targets
start with a newly introduced instruction – endbr32/64. A compiler is responsible for adding
endbr instructions in a binary to make it IBT compatible. SHSTK is a hardware-based
shadow stack implementation that implements shadow stack using hardware and oper-
ating system support. When CET SHSTK is enabled, call and ret instructions automati-
cally push and pop the return address from a protected shadow stack in the memory. The
shadow stack is marked as a special type of page by the operating system. Access to the
shadow stack memory pages is only possible by CPU through call and ret instructions. In
some special cases, an instruction wrss can be enabled and used to write to the CET shadow
stack.

3.2.1 PROBLEMS

Problems with Intel CET that motivate a software-based shadow stack implementation are
summarized below:

• Intel CET is only supported on processors starting from 11th generation. This leaves
older hardware without any support.

• It requires a compatible operating system to work – Linux does not fully support Intel
CET yet.

• It requires support for glibc and GCC to be compatible with features like longjmp and
C++ exception handling.

To test the current state of CET, we installed a patched Kernel on a 12th generation Intel
machine. Even with supporting a kernel, shadow stack is not enabled by default. According
to Linux Kernel CET support design, this task of requesting shadow stack should be done
by glibc for supported applications Since GCC and glibc do not support the latest Linux
Kernel CET design, shadow stack does not work out of the box. For testing, we modified the
source code of C and C++ SPEC CPU 2006 programs to issue an arch_prctl call to request
shadow stack at the beginning of their main function. While being very efficient with just
0.41% overhead it suffers from compatibility issues with programs that use longjmp and ex-
ception handling. Intel CET shadow stack performance numbers are presented in Chapter
5.

10

4 FORWARD-EDGE CFI

Protecting forward-edge control-flow transfer instructions like indirect calls and jumps are
called forward-edge CFI. It is a precursor to having an effective shadow stack defense. If an
attacker is simply able to bypass the shadow stack checks, the mechanism does not provide
any security. In this section, we will focus on improving the performance of the forward-
edge CFI scheme. Specifically, we explore different hashing schemes and setups for im-
proving the hash table lookup performance. We also introduce an index-based scheme for
CFI, which aims to reduce overhead while ensuring CFI. A study like this has been missing
in the address translation based CFI literature [6, 54, 44], and we believe that our findings
would benefit future address translation-based works.

4.1 ADDRESS TRANSLATION BASED CFI

In an instrumented binary new code is added, which causes the location of the instructions
to shift. Therefore, code pointers need to be updated to their new address, this process
is called address translation by the literature. During static analysis, one cannot be sure
whether an integer constant is a code pointer or some other type of constant. Therefore,
pointer fix-ups must be done at runtime. A typical way to do this, as shown in DynamoRIO
[6] and BinCFI [54], is to wait until the constant is used in an Indirect Control Flow (ICF)
transfer instruction. At that time, a lookup is performed and the target value is replaced by
the corresponding new address from the lookup table. Since a target is now restricted to en-
tries stored in the lookup table, this scheme ensures CFI. However, any additional runtime
operation adds to the overhead of the running program, making the performance of ad-
dress translation critical to the performance of the instrumented binary. BinCFI and BinCC
[44] use a hash table to implement a lookup table. However, there has been no systematic
study on the performance of address translation with different hash table schemes and se-
tups. Performance overhead is often the biggest factor that determines the deployment of a
hardening mechanism. We aim to test the limits of address translation performance with-
out sacrificing compatibility. We evaluate different hashing schemes and hash table setups
in hopes of finding a more efficient approach.

4.1.1 HASHING ALGORITHM

The choice of hashing scheme is an important factor in the performance of the address
translation routine. Different collision avoidance schemes have different insertion, search,
and deletion costs. The choice of the hashing scheme depends on the use case.

Separate chaining stores collided keys separately in a linked list. It works well with bad
hash functions and high load factors without needing to be resized but is not very cache ef-
ficient. On the other hand, open addressing [47] requires extra care with the choice of hash
function and load factor but provides better cache performance than separate chaining.
For our use case, open addressing would work better since we require to have fast a lookup

11

performance. In the open addressing scheme a collision is resolved by probing the next
slots. Some of the most popular probing techniques are linear probing, quadratic probing,
and double hashing.

In linear probing [46] collisions are handled by scanning the next slots in the hash table
sequentially. Linear probing suffers from the problem of primary clustering where many
consecutive elements form a group increasing the time taken to find a slot (the number of
probes increase). Quadratic probing [48] is an upgrade over linear probing as it operates by
adding successive values of an arbitrary quadratic polynomial until an open slot is found.
It can avoid the problem of primary clustering. Double hashing [45] makes use of two hash
functions, one hash function is used to calculate the initial value, and the second hash func-
tion is used to calculate the step size in the probing sequence. It is the most effective form
of probing producing uniform distribution of records throughout the hash table. However,
calculating two hashes per lookup is expensive and makes the implementation compli-
cated. Quadratic probing strikes a good balance between ease of use and performance, so
it promises to be a good option for our use case. However, in the worst case, quadratic
probing can have a O(n) lookup cost. To improve upon this, we test Cuckoo hashing [28],
which guarantees a worst-case cost of just 2 lookups, it achieved this by storing keys in two
separate tables. The scheme guarantees that every key is stored in its ideal slot in one of
the two tables. The ideal slots are calculated using two different hash functions. Cuckoo
hashing does not probe any slots other than ideal slots for a given key. Quadratic probing
and cuckoo hashing are the candidates for our efficient hashing scheme. Hence, we test
their performance to see if cuckoo hashing is an improvement over quadratic probing.

Hypothesis: Cuckoo hashing should perform better than quadratic probing.

IMPLEMENTATION OF QUADRATIC PROBING: Implementation of quadratic probing is shown
in Figure 4.1. Quadratic probing is implemented with the following probing function:

p(i) = 0.5i (i +1)mod N
Where N is the size of the hash table, this can also be computed incrementally by -
p(i) = (p(i −1)+ i)mod N

In other words, we can simply add i to the last slot that was tried, with i going from 1 to
tabsize - 1. When the size of hash table N is a power of 2, the period of probing becomes
equal to the size of the table [20].

IMPLEMENTATION OF CUCKOO HASHING: Cuckoo hashing implementation is shown in the
Figure 4.2. The insertion works in the following manner:

1. Check if the first slot is empty, if it is empty the key is stored there.

2. If the first slot was already occupied the stored element is evicted and the key is stored
there.

3. The evicted item is then inserted into the second table by following the same proce-
dure.

4. This process continues until an empty position is found to store the key.

12

1 function insert(x) is
2 if lookup(x) then
3 return
4 end if
5 if T[h(x)] is empty then
6 T[h(x)] = x
7 return
8 end if
9 else

10 loop 1 to T_SIZE - 1
11 idx = (idx + 1) &

(T_SIZE - 1)
12 if T[h(idx) is empty]

then
13 T[h(idx)] = x
14 return
15 end if
16 end loop
17 end function

1 function lookup(x) is
2 if T[h(x)] == x
3 return
4 end if
5 else
6 loop 1 to T_SIZE - 1
7 idx = (idx + 1) &

(T_SIZE - 1)
8 if T[h(idx)] == x then
9 return

10 end if
11 end loop
12 end function

Figure 4.1: (Left) Quadatic probing insert function and (Right) lookup function.

It is possible to run into infinite loops where a cycle of evictions is repeated and the hash-
ing is not able to generate a hash table. To exit from that case, the iteration loop is only
repeated a MAX_LOOP number of times. A cuckoo hash might require multiple rehashes
before it can create a hash table. The choice of hashing function and the load factor also
determines the number of rehashes required by cuckoo hashing. We evaluate the perfor-
mance of insertions and lookup between the two schemes.

EXPERIMENTAL SETUP: An experiment is set up to perform a large number of insertions
and lookups using cuckoo hashing and quadratic probing. The keys used are pointer con-
stants from SPEC binaries that a translation table would contain. We conduct tests with
two different load factors of 0.4 and 0.8. We test with two different hashing functions, one
with a 1-degree of independence and the other with a 2-degree of independence. The hash
functions used are shown in Figure 4.3.

RESULTS: It is observed that with a load factor of 0.4 and a simpler hashing function with
1-degree of independence cuckoo hashing failed to generate a hash table in the first at-
tempt. When switching to a hashing function with 2 degrees of independence cuckoo hash-
ing was able to generate a hash table but it takes 20% more time than quadratic probing.
With a load factor of 0.8 cuckoo hashing fails to work with both hashing functions while
quadratic probing still works robustly. Cuckoo hashing requires more hashes per insert,

13

1 function insert(x) is
2 if lookup(x) then return
3 end if
4 loop MAX-Loop times
5 if T1[h1(x)] is empty

then
6 T1[h1(x)] = x
7 return
8 end if
9 swap(x, T1[h1(x)])

10 if T2[h2(x)] is empty
then

11 T2[h2(x)] = x
12 return
13 end if
14 swap(x, T2[h2(x)])
15 end loop
16 rehash(x)
17 insert(x)
18 end function

1 function lookup(x) is
2 return T1[h1(x)] == x or

T2[h2(x)] == x
3 end function

Figure 4.2: (Left) Cuckoo insert function and (Right) lookup function.

1 (key * random) &
hash_table_size

1 key(key * random1 + random2)
& hash_table_size

Figure 4.3: (Left) 1-degree independence hash function and (Right) 2-degree independence
hash function.

due to its eviction-based strategy. On the other hand, our quadratic probing based ap-
proach can do probing with a simpler iterative approach as described in the last section.
Refer to Table 4.1 for results.

Even with lookups cuckoo hashing takes 24% more time than quadratic probing. Refer
to Table 4.2. This is because cuckoo hashing lookup will require 1.5 hashes per lookup
(assuming keys are evenly distributed between two tables). Also, the memory accesses to
these buckets are unlikely to fit on a single cache line. Compare this to quadratic probing
where only one hash is required and potential probes are likely to be in the current cache
line – cuckoo hashing is not very cache efficient.

CONCLUSION: Cuckoo hashing looks like a better approach on paper but its unreliable
insertion and cache inefficiency make it worse than quadratic hashing for use in an address
translation table. Hence, we recommend using quadratic probing with a simple 1-degree

14

Hash function qprobe | LF=0.4 cuckoo | LF=0.4 qprobe | LF=0.8 cuckoo | LF=0.8
1-degree 5.26 failed 4.95 failed
2-degree 5.94 7.14 5.46 failed

Table 4.1: Insertion cost of cuckoo hashing and quadratic probing. LF stands for load factor.

Hash scheme Time
Qprobe 6.03
Cuckoo 7.52

% Overhead 24.70

Table 4.2: Lookup cost of cuckoo hashing and quadratic probing.

of independence hashing function.

4.1.2 HASH TABLE SETUP

In BinCFI [54], the translation function first performs a check to determine whether the
target is within the current module. If so, the lookup is performed on the current module
translation table. If the target is from a different module, it goes through a two-stage pro-
cess. In the first stage, a global table is used to dispatch the lookup on the correct module.
The top-level table in BinCFI is implemented as an array because on 32-bit systems, only
1M pages are possible and the lookup table entry would contain a mapping from a page
address to a particular module of the running program. Shared libraries are page-aligned
therefore they would at least be one page apart, this ensures that a page cannot be part of
two modules.

We cannot create this type of array top-level hash table on 64-bit systems, since the num-
ber of possible pages is 252, far more than the maximum addressable range of 248 on 64-
bit systems. So, Instead of maintaining a top-level array like BinCFI, another hash table
needs to be created. Thus, address translation for an inter-module target would require
two lookups on two different hash tables.

An alternative to this setup is to create a single hash table with all targets. A lookup on
the single hash table should save one memory access and one hash table lookup. However,
when most of the transfers are intra-module and the number of pointers in the current
module is small relative to the total number of pointers of the binary, then lookup on a
smaller table in a two-level scheme can be faster than a one-level setup.

Hypothesis: One-level hash table setup should be faster than a two-level setup.

IMPLEMENTATION: In a one-level hash table, only a single hash table is created for all the
modules of a binary, the table is created at runtime when the program is being loaded by the
loader. For a two-level hash table, different hash tables are statically created for different
modules of a program. A top-level hash table maps page addresses to respective modules.

15

Top level hash table

ls libc libcap

ls, libc and libcap

Figure 4.4: (Left) One-level hash table setup and (Right) two-level hash table setup.

After lookup on the top-level hash table, another lookup is then performed on the per-
module hash table. The setup of both hash table schemes is shown in Figure 4.4. One-level
hash table for a binary such as ls would have entries for all the pointers in a single table.
For a two-level hash setup, there are tables for each module and a top-level hash table to
dispatch the lookup on a per-module hash table.

EXPERIMENTAL SETUP: To compare the performance of a one-level hash table with a two-
level hash table setup we created an experiment that uses pointers from SPEC binaries and
their libraries. First, we generate the hash table(s) for both of the schemes and then perform
lookups 1000 times the number of total entries. This is to ensure that the cost to insert is
not a factor when comparing the performance difference between lookups. We test the two
schemes with different ratios of inter-module to intra-module pointers and two different
load factors of 0.5 and 0.8. The idea behind using a high number of intra-module pointer
lookups as compared to the total number of lookups is, during a typical run of a binary a
majority of ICF targets are usually within the module. Specifically, we test configuration
with 90% to 100% of intra-module targets. The first column of Table 4.3 show that.

RESULTS: As we can see in Table 4.3 that one-level hash table is faster than a two-level
table in all the cases. As the fraction of intra-module pointers increases the performance
of both the schemes improves. For a one-level setup, this increase in performance is at-
tributed to decreased collision/lookup, and for a two-level setup, this is because the lookup
only needs to be performed on a single hash table. Surprisingly, both of the schemes per-
form better with a higher load factor. We find that this is due to better caching of a smaller
hash table dominating the effect of increased collisions/lookup. In case, where all the tar-
gets are intra-module the time taken by the one-level scheme should be equal to the time
taken by the two-level scheme but the numbers in the fourth row do not support our as-
sumption. This is because when using a similar load factor for both the schemes, say 0.8.
The size of a hash table in the case of a one-level table would be larger than that of the
size of a two-level table for the main module because in a one-level scheme, a single table
would contain all the pointer targets. One-level setup with a load factor of 0.8 and a two-
level setup with a load factor of 0.5 achieves the same number of collisions/lookup and the
same size of hash table but still shows very different times. We found that the comparison
made in the two-level setup that dispatches the lookup to the current module hash table is

16

Intra/Total 1-level | LF=0.5 1-level | LF=0.8 2-level | LF=0.5 2-level | LF=0.8
0.9 9.48 8 13.02 10.7

0.95 9.13 7.82 11.81 9.98
0.99 9.07 7.67 10.4 8.77

1 9.03 7.62 10 8.53

Table 4.3: Comparison of one-level and two-level hash table implementation. LF stands for
load factor.

1 if isEncoded(ptr) then
2 // decoding logic
3 // ...
4 else
5 addr_trans(ptr)
6 end if

Figure 4.5: Index-based address translation.

responsible for the observed overhead. On removing the comparison, we found the perfor-
mance to be similar.

CONCLUSION: One-level hash table implementation is a better option as it performs bet-
ter than a two-level setup for both load factors.

4.2 INDEX-BASED CFI

We propose an alternative to address translation that avoids a table lookup while enforcing
CFI. We identify code pointers and encode them with their index in the translation table. In
particular, we have a per-module translation table called Local Translation Table (LTT) and
a Global Translation Table (GTT). GTT maintains information like LTT address, the load
address of the module, size, etc. We modify the address translation function to perform
a check to see if the pointer is encoded. For an encoded pointer, decoding it would give
global and local indices in GTT and LTT respectively, which can be used to get to the LTT
entry which stores the respective new pointer. Instead of performing hash table lookup, the
operation now reduces to two array indexing operations.

Encoding a code pointer depends upon the correct identification of code pointers. Static
analysis cannot guarantee error-free code pointer classification. Position Independent Ex-
ecutable (PIE) binaries on x86-64 Linux have relocation information that could be used to
identify all pointer constants, but finding a subset of code pointers from it relies on some
assumptions such as the absence of data in the middle of the code. So, this approach is
vulnerable to both false-positives and false-negative in code pointer classification.

17

4.2.1 INLINING OF DECODING ROUTINE

As discussed above, in index-based CFI we encode the code pointers with LTT and GTT
array indices. Since PIE binaries are widely used today, we can encode almost all of the
pointers. Instead of keeping the decoding routine in the address translation function we
choose to inline it at all the indirect calls. This would save a call to the translation func-
tion and improve performance. The pseudocode of instrumentation at an ICF with inlined
decoding function would look like Figure 4.5. Our index-based scheme with inlined de-
coding routine can reduce the overhead of address translation by 67%. A discussion of the
evaluation is done in Chapter 5.

4.3 IMPLEMENTATION

BINARY INSTRUMENTATION: Our instrumentation works by leaving the original code in
place and storing the instrumented code in its own section. The original code section is
marked as read-only while the instrumented code section is made executable. An LTT is
created inside every instrumented binary. This table contains entries of all possible code-
pointers and their corresponding new pointer.

Every ICF transfer site is instrumented to jump to the translation function which is repli-
cated inside each instrumented module. In the case of address translation based CFI the
translation function performs a lookup on the one-level hash table which returns the GTT
and LTT indices of the code-pointer. Following the indices to the LTT table entry where a
trampoline to the new code-pointer is stored the translation process is completed. When
an index-based scheme is used the encoded pointers are decoded to get its GTT and LTT
indices, which would directly get us to the trampoline for the pointer.

Jump tables are analyzed statically and fixed up with the new code address. This is done
by making a copy of the jump table and modifying the code that used original jump table
to use this copy. The contents of this new jump table are changed so that it points to the
new code location.

LOADER CHANGES: To keep our implementation completely transparent, instrumented
binaries are modified to use our customized loader while regular binaries use the default
system loader. We made our changes on top of the default loader for Ubuntu 20.04 (GNU
libc-2.31). Additional tasks performed by the loader can be summarized as:

• Creation of GTT: Loader will create a global table called GTT at runtime. GTT con-
tains information on the modules loaded by the loader.

• Creation of one-level hash table: The loader is responsible for creating the one-level
hash table at the runtime. The hash table is re-hashed when inserting pointers from
a new module causes the load factor to go above a set limit. This can happen during
the initial phase when a program is being set up the loader or when a shared library
is opened at runtime using dlopen.

18

• Encoding the pointer for the index-based scheme: The loader is responsible for re-
locating pointers by adding the module base address to the pointer offset value. For
identified code pointers we change their relocation type to a new type. The loader
on encountering this new relocation type encodes the pointer according to its array
indices instead of performing relocation.

• Loading instrumented modules: The default search process is changed to always load
instrumented version of shared libraries for an instrumented program.

5 EVALUATION

All the testing is done on a desktop with 12th generation Intel Core i7 with 16GB RAM,
running Ubuntu 20.04. We test the performance of address translation and index-based
encoding scheme by instrumenting SPEC binaries and comparing their overheads with
the base timings. With just address translation enabled the average overhead is 7.27%.
When index-based encoding is used with inlined decoding routine, the overhead reduces
to 2.35%. Figure 5.1 shows the overhead of the address translation scheme next to the over-
head of index-based scheme with inlined decoding routine. Index-based encoding scheme
improves the performance by more than 2x.

p
er

lb
en

ch
b

zi
p

2

m
cf

h
m

m
er

sj
en

g
li

b
q

u
an

tu
m

h
26

4r
ef

o
m

n
et

p
p

as
ta

r
xa

la
n

cb
m

k
bw

av
es

m
ilc

ze
u

sm
p

gr
o

m
ac

s

ca
ct

u
sA

D
M

le
sl

ie
3d

n
am

d
d

ea
lI

I
so

p
le

x
p

ov
ra

y

G
em

sF
D

T
D

to
n

to
lb

m
sp

h
in

x3

0

10

20

30

40

50

Benchmark

O
ve

rh
ea

d
%

Address translation Index-based

Figure 5.1: Overhead comparison of address translation and index-base CFI.

Next, we conduct tests on our proposed shadow stack design to evaluate the following:

• The performance overhead of our shadow stack.

19

b
zi

p
2

m
cf

h
m

m
er

sj
en

g

h
26

4r
ef

as
ta

r

xa
la

n
cb

m
k

bw
av

es

m
il

c
ze

u
sm

p

gr
o

m
ac

s

ca
ct

u
sA

D
M

le
sl

ie
3d

n
am

d

d
ea

lI
I

so
p

le
x

p
ov

ra
y

G
em

sF
D

T
D

lb
m

sp
h

in
x3

−10

0

10

20

30

40

50

Benchmark

O
ve

rh
ea

d
%

Full canary Shadow stack

Figure 5.2: Overhead of our proposed shadow stack with overhead of full canary protection.

• Overhead compared to the overhead of using canary protection for all functions by
using -fstack-protector-all.

• Performance of Intel CET shadow stack.

• Code size increase due to shadow stack instrumentation.

We see that the average performance overhead of our shadow stack is 4.92% over the de-
fault SPEC binaries. Povray incurs an extremely high overhead of 45.74%, excluding povray
the overhead is 2.77%. The overhead of enabling stack canary protection for all functions is
1.61%. Figure 5.2 shows the full canary protection overhead plotted alongside our shadow
stack overhead for various SPEC programs.

To test the performance and compatibility of the CET shadow stack, we installed the lat-
est patch, based on Kernel 6.1.13 on a 12th generation Intel processor machine and used
SPEC CPU 2006 to calculate overhead introduced when CET shadow stack is enabled. As
expected, we were only able to get a subset of C/C++ SPEC binaries running. This is due to
a lack of support from glibc and GCC which is necessary for supporting language features
like longjmp/setjmp and C++ exception handling.

Intel CET, while having a very low overhead of 0.41%, in its current state does not work
with programs with longjmp and exception handling 5.3. In our testing, we found that Intel
CET aborted all the SPEC binaries that made use of C++ exceptions or setjmp/longjmp.

The total overhead of full CFI protection including index-based forward-edge CFI (in-
lined decoding) and shadow stack is 7.09%. This is shown in Figure 5.4.

20

b
zi

p
2

gc
c

m
cf

go
b

m
k

sj
en

g

li
b

q
u

an
tu

m

h
26

4r
ef

as
ta

r

xa
la

n
cb

m
k

m
il

c

gr
o

m
ac

s

n
am

d

d
ea

lI
I

so
p

le
x

ca
lc

u
li

x

lb
m

−2

0

2

4

6

Benchmark

O
ve

rh
ea

d
%

Full canary CET SHSTK

Figure 5.3: Intel CET shadow stack overhead compared with full canary protection over-
head.

The average size increase of code section size for SPEC binaries when full CFI protection
is enabled with index-based forward-edge CFI (inlined decoding) and the shadow stack is
2.15x. Size increase for different binaries is shown in Figure 5.5.

6 CONCLUSION

In this thesis, we presented a novel binary instrumentation based shadow stack which re-
purposes stack canary code and stack canary slot to solve the compatibility challenges that
arise due to the use of long jumps and exception handling. Our evaluations show that our
shadow stack implementation is very efficient with an overhead of only 4.92%.

We also conducted a study on hashing schemes and hash table setups to determine the
best configuration for address translation. Our experiments showed that a one-level hash
table setup with quadratic probing gives the best performance. Finally, with our index-
based scheme we were able to achieve an overhead of only 2.35% for forward-edge CFI. A
complete CFI implementation using index-based forward-edge CFI along with our shadow
stack was achieved at a modest overhead of 7.09%.

21

b
zi

p
2

m
cf

h
m

m
er

sj
en

g

h
26

4r
ef

as
ta

r

xa
la

n
cb

m
k

bw
av

es

m
il

c
ze

u
sm

p

gr
o

m
ac

s

ca
ct

u
sA

D
M

le
sl

ie
3d

n
am

d

d
ea

lI
I

so
p

le
x

p
ov

ra
y

G
em

sF
D

T
D

lb
m

sp
h

in
x3

0

20

40

60

Benchmark

O
ve

rh
ea

d
%

Forward-edge CFI Shadow stack

Figure 5.4: Overhead of our shadow stack scheme including forward-edge CFI overhead
and using index-based scheme (inlined decoding).

as
ta

r
bw

av
es

b
zi

p
2

ca
ct

u
sA

D
M

ca
lc

u
li

x
G

em
sF

D
T

D
go

b
m

k
gr

o
m

ac
s

h
26

4r
ef

h
m

m
er

lb
m

le
sl

ie
3d

li
b

q
u

an
tu

m
m

cf
m

ilc
n

am
d

o
m

n
et

p
p

p
er

lb
en

ch
p

ov
ra

y
sj

en
g

so
p

le
x

sp
h

in
x

to
n

to w
rf

X
al

an
ze

u
sm

p

1

2

3

4

5

6

Benchmark

M
u

lt
ip

le
o

fo
ri

gi
n

al
co

d
e

se
ct

io
n Original code New code

Figure 5.5: Size of the instrumented code section with index-based (inlined decoding)
forward-edge CFI along with shadow stack compared to the size of original code
section.

22

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Cfi: Principles, implementations,
and applications. In ACM CCS, 2005.

[2] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity principles,
implementations, and applications. ACM TISSEC, 2009.

[3] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with control-flow lock-
ing. In ACSAC, 2011.

[4] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming: a new
class of code-reuse attack. In ASIACCS, 2011.

[5] E. Borin, C. Wang, Y. Wu, and G. Araujo. Software-based transparent and comprehen-
sive control-flow error detection. In Code Generation and Optimization, 2006.

[6] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic
optimization. In Code Generation and Optimization, 2003.

[7] N. Burow, X. Zhang, and M. Payer. Sok: Shining light on shadow stacks. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 985–999. IEEE, 2019.

[8] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-flow bending: On
the effectiveness of control-flow integrity. In USENIX Security Symposium, 2015.

[9] N. Carlini and D. Wagner. {ROP} is still dangerous: Breaking modern defenses. In 23rd
{USENIX} Security Symposium ({USENIX} Security 14), 2014.

[10] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy.
Return-oriented programming without returns. In ACM CCS, 2010.

[11] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
and Q. Zhang. StackGuard: automatic adaptive detection and prevention of buffer-
overflow attacks. In USENIX Security Symposium, 1998.

[12] T. H. Dang, P. Maniatis, and D. Wagner. The performance cost of shadow stacks and
stack canaries. In Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, 2015.

[13] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose. Stitching the gadgets: On the in-
effectiveness of coarse-grained control-flow integrity protection. In USENIX Security,
2014.

[14] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: a detection tool to defend
against return-oriented programming attacks. In ASIACCS, 2011.

[15] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. Xfi: Software guards
for system address spaces. In Operating systems design and implementation, 2006.

[16] B. Ford and R. Cox. Vx32: lightweight user-level sandboxing on the x86. In USENIX
ATC, 2008.

[17] M. Frantzen and M. Shuey. Stackghost: Hardware facilitated stack protection. In
USENIX Security Symposium, 2001.

23

[18] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Portokalidis. Size
does matter: Why using gadget-chain length to prevent code-reuse attacks is hard.
In USENIX Security, 2014.

[19] L. C. Harris and B. P. Miller. Practical analysis of stripped binary code. ACM SIGARCH,
2005.

[20] F. R. A. Hopgood and J. Davenport. The quadratic hash method when the table size is
a power of 2. The Computer Journal, 1972.

[21] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure execution via program shep-
herding. In USENIX Security Symposium, 2002.

[22] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood. Pin: building customized program analysis tools with dynamic
instrumentation. In Programming language design and implementation, 2005.

[23] S. McCamant and G. Morrisett. Evaluating sfi for a cisc architecture. In USENIX Secu-
rity Symposium, 2006.

[24] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic binary
instrumentation. In Programming language design and implementation, 2007.

[25] B. Niu and G. Tan. Rockjit: Securing just-in-time compilation using modular control-
flow integrity. In ACM CCS, 2014.

[26] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-free: defeating return-
oriented programming through gadget-less binaries. In ACSAC, 2010.

[27] A. One. Smashing the stack for fun and profit. Phrack magazine, 7(49), 1996.

[28] R. Pagh et al. Cuckoo hashing for undergraduates. IT University of Copenhagen, 6,
2006.

[29] M. Payer, A. Barresi, and T. R. Gross. Fine-grained control-flow integrity through bi-
nary hardening. In Detection of Intrusions and Malware, and Vulnerability Assessment,
2015.

[30] M. Payer, T. Hartmann, and T. R. Gross. Safe loading - a foundation for secure execu-
tion of untrusted programs. In IEEE S&P, 2012.

[31] Pin - a dynamic binary instrumentation tool. http://pintool.org/.

[32] A. Prakash, H. Yin, and Z. Liang. Enforcing system-wide control flow integrity for ex-
ploit detection and diagnosis. In ACM CCS, 2013.

[33] M. Prasad and T.-c. Chiueh. A binary rewriting defense against stack based buffer
overflow attacks. In USENIX Annual Technical Conference, General Track, 2003.

[34] R. Qiao, M. Zhang, and R. Sekar. A principled approach for rop defense. In Annual
Computer Security Applications Conference, 2015.

[35] R. Rohleder. Hands-on ghidra-a tutorial about the software reverse engineering
framework. In Proceedings of the 3rd ACM Workshop on Software Protection, 2019.

[36] K. Scott and J. Davidson. Strata: A software dynamic translation infrastructure. In
IEEE Workshop on Binary Translation, 2001.

24

http://pintool.org/

[37] H. Shacham et al. The geometry of innocent flesh on the bone: return-into-libc with-
out function calls (on the x86). In ACM CCS, 2007.

[38] V. Shanbhogue, D. Gupta, and R. Sahita. Security analysis of processor instruction
set architecture for enforcing control-flow integrity. In Proceedings of the 8th Inter-
national Workshop on Hardware and Architectural Support for Security and Privacy,
2019.

[39] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, et al. Sok:(state of) the art of war: Offensive techniques
in binary analysis. In Security and Privacy (SP), 2016.

[40] S. Sinnadurai, Q. Zhao, and W. fai Wong. Transparent runtime shadow stack: Protec-
tion against malicious return address modifications, 2008.

[41] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory. In IEEE Security
and Privacy, 2013.

[42] P. team. Address space layout randomization. http://pax.grsecurity.net/docs/aslr.txt,
2001.

[43] V. Van Der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen, S. Rawat, H. Bos, T. Holz,
E. Athanasopoulos, and C. Giuffrida. A tough call: Mitigating advanced code-reuse
attacks at the binary level. In Security and Privacy (SP), 2016.

[44] M. Wang, H. Yin, A. V. Bhaskar, P. Su, and D. Feng. Binary code continent: Finer-
grained control flow integrity for stripped binaries. In Proceedings of the 31st Annual
Computer Security Applications Conference, 2015.

[45] Wikipedia. Double hashing — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/Double_hashing, 2023. [Online; accessed 11-May-2023].

[46] Wikipedia. Linear probing — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/Linear_probing, 2023. [Online; accessed 11-May-2023].

[47] Wikipedia. Open addressing — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/Open_addressing, 2023. [Online; accessed 11-May-2023].

[48] Wikipedia. Quadratic probing — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/Quadratic_probing, 2023. [Online; accessed 11-May-2023].

[49] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and
N. Fullagar. Native Client: A sandbox for portable, untrusted x86 native code. In IEEE
Symposium on Security and Privacy, 2009.

[50] B. Zeng, G. Tan, and G. Morrisett. Combining control-flow integrity and static analysis
for efficient and validated data sandboxing. In ACM CCS, 2011.

[51] C. Zhang, T. Wei, Z. Chen, L. Duan, S. McCamant, and L. Szekeres. Protecting function
pointers in binary. In ASIACCS. ACM, 2013.

[52] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou.
Practical control flow integrity and randomization for binary executables. In IEEE Se-
curity and Privacy, 2013.

25

https://en.wikipedia.org/wiki/Double_hashing
https://en.wikipedia.org/wiki/Double_hashing
https://en.wikipedia.org/wiki/Linear_probing
https://en.wikipedia.org/wiki/Linear_probing
https://en.wikipedia.org/wiki/Open_addressing
https://en.wikipedia.org/wiki/Open_addressing
https://en.wikipedia.org/wiki/Quadratic_probing
https://en.wikipedia.org/wiki/Quadratic_probing

[53] M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar. A platform for secure static binary in-
strumentation. ACM VEE, 2014.

[54] M. Zhang and R. Sekar. Control flow integrity for cots binaries. In USENIX Security,
2013.

[55] M. Zhang and R. Sekar. Control flow and code integrity for cots binaries: An effective
defense against real-world rop attacks. In ACSAC, 2015.

26

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

30494146

2023

	Acknowledgments
	Introduction
	Related work
	Control-Flow Integrity
	Shadow stack

	Backward-edge CFI
	Shadow stack design
	Security analysis
	Implementation

	Intel CET shadow stack
	Problems

	Forward-edge CFI
	Address translation based CFI
	Hashing algorithm
	Hash table setup

	Index-based CFI
	Inlining of decoding routine

	Implementation

	Evaluation
	Conclusion
	Bibliography

